Effect of filler content on morphology and physical-chemical characteristics of poly(vinylidene fluoride)/NaY-zeolite filled membranes
نویسندگان
چکیده
Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distributions between the previous fiber size values. Hydrophobicity of the membranes increases from ~115o water contact angle to ~128o with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137o. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications.
منابع مشابه
Performance of Chemically Modified TiO2-poly (vinylidene fluoride) DCMD for Nutrient Isolation and Its Antifouling Properties
The surface properties of TiO2-PVDF nanocomposite membranes were investigated by incorporating different chemically modified TiO2 nanoparticles into the poly (vinylidene fluoride) (PVDF) matrix. The nanocomposite membranes were prepared via dual coagulation bath diffusion and the induced phase inversion method. The membrane surface morphologies were investigated by using SEM and AFM and related...
متن کاملPoly (Vinylidene Fluride) Membrane Preparation and Characterization: Effects of Mixed Solvents and PEG Molecular Weight
In this study, polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc), which had different affinities with the nonsolvent (water). Properties of the prepared membranes were characterized using scanning electron microscope (SEM) and contact angle and membrane p...
متن کاملNano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation
A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...
متن کاملNano composite PEBAX® membranes: Effect of zeolite X filler on CO2 permeation
A PEBAX-nano zeolite X mixed matrix membrane was fabricated and operationally characterized using single gas (CO2) permeation. X-ray diffraction (XRD) analysis was used to study the arrangement of polymer chains of mixed matrix membrane. The membranes were characterized by scanning electron microscopy (SEM) to study cross-sectional morphology. The single gas permeability were carried...
متن کاملEffects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA based polymer blend electrolytes
Composite polymer electrolyte (CPE) membranes, comprising poly (vinylidene fluoride) (PVdF)/poly (methyl methacrylate) (PMMA), BaTiO3 as ceramic filler and LiBF4 as the lithium salt were prepared using a solution casting technique. The prepared membranes were subjected to XRD, FT-IR, impedance spectroscopy and thermal stability studies. The incorporation of nanofiller greatly enhanced the ionic...
متن کامل